=N -

Uy

Sr R
NACA TN 3152 L7568

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 3152

TRANSVERSE OSCILLATIONS IN A CYLINDRICAIL COMBUSTION
CHAMBER
By Franklin K. Moore and Stephen H. Maslen

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington
.October 1954

AP

B OYETTY )
{}, :"4\_':3‘" Cnn ‘7 1 r~ ~

-



ERRATA
NACA TN 3152
TRANSVERSE OSCILIATIONS IN A CYLINDRICAL
COMBUSTION CHAMBER
By Franklin K. Moore and Stephen H. Maslen
October 1954

Page 8: Equation (13) should be

2 2
2§ J:(Z)
xPr Kal - (2)2 . 3_)2
Z ) (ZO
N;Z(z) N;z(zo)

Figure 4, which depends on equation (13), is correct as it stands, however.

Page 8: The left side of equation (14) should be

Pages 9 and 10: The left sides of equations (16) and (18) should be

-4 (Rz-rcz))
2

2" Im(w)
7 rlea.f

NACA-Langley - 4-27-68 - 700

- . o



1,80

CL-1

“TECH LIBRARY KAFB, NM

T

NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC{ 0065851
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TRANSVERSE OSCILLATIONS IN A CYLINDRICAL COMBUSTION CHAMBER

By Franklin K. Moore and Stephen H. Maslen

SUMMARY

A study has been made of certain festures of transverse resonance
in an idealized combustion chamber. Modes of weak oscillation are des-
cribed, with average Mach number neglected but with the effect of axial
gradient of mean temperature considered. These weak oscillations are
assumed to be amplified by coupling with the vigorous combustion occeur-
ring in flame-holder wokes.

A fleme-holder weke is idealized as a thin annulus performing
mechenical work on the surrounding gases. The amplification of the
various modes depends on the flame-holder diameter, centerbody diameter,
and on time-lag effects.

The nature of finite transverse periodic waves is also analyzed.
Results show that such waves have frequencies independent of amplitude
and do not steepen with time, at least to second order.

INTRODUCTION

The flow in the combustion chambers of jet engines is frequently
subject to a resonant oscillation, the character of which depends on the
particular engine configuration. The transverse-wave motions described
by the classical theory of acoustic oscillations inside cylindrical
enclosures (refs. 1 and 2) may scmetimes be important.

In the classical theory, the fluid medium is considered to be at
rest and in a uniform state except for weak isoenergetic fluctuations
in velocity and state properties. Under these assumptions, the motion
is governed by the wave equation, written here in cylindrical coordinstes
for the pressure disturbance (sketch (a))

<202, _ 2 1, ,1
Pl = 2% =& (py + PL.+ T D2 + -5 Pho) (12)
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Velocity and pressure fluctuations are related by the equation
pg, +Vp' =0 (1b)

A class of solutions of equation (la) suitable for internal flows is

,”5_2 =N
y =ei<0)’b+ o= - 2 ) (cr) ()

where n 1is any positive integer.

(a) Coordinate system and sketch of fundamental sloshing mode.

(A complete list of symbols is given in the appendix.) For resonant
oscillations, C and ® are determined by conditions at the ends of the
cylinder and from the condition of zero radial velocity at the cylinder

wall (r = R)
J];(C) =0 (3)

For each value of n there exists an infinite number of solutions of
equation (3) for C, because Jh is an oscillatory function of its
argument. Hereinafter, the number m will be used to specify that C

is chosen as the (m + l)th number for which the derivative of Jﬁ
venishes, but J, does not.

If consideration is restricted to oscillations independent of X,
the two simplest cases are: first "radial” mode (n = 0, m = 1),

.8
3.83i%t
p' = e R JO(3.83 %—) (4)
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and first "sloshing" mode (n = 1, m = 0),

ot = ei(l.e‘j%t"‘e);rl(l,g,;__ %) (5)

The loci of disturbance motions for the first sloshing mode (n = 1,
m = 0) are shown in sketch (a). There are two nodes, diametrically
opposed, and the fluid appears to slosh between these nodes in the illus-
trated case of a standing wave. This mode has the lowest frequency

(%? = 1.8;) of all the possible transverse cylindrical waves.

In the present report, it will be assumed that resonant combustion-
chamber oscillations result from the amplification of initially weak
transverse pressure disturbances interacting with the combustion pro-
cess. (The amplification of transverse waves in solid-propellant rockets
has been studied by Grad (ref. 3) and Chéng (ref. 4).) On this assumption,
the following problems are investigated:

(1) Modes of oscillation: The transverse modes of oscillation should
be related to conditions in a cambustion chamber, which contains gases in
motion with severe gradients of state properties owing to heat released
by the combustion process. These conditions are at variance with the
assumptions of classical acoustic theory.

(2) Amplification at & thin annulus: Flame holders (fig. 1) induce
especially vigorous burning in their wakes. Flame-holder configurations
would therefore be expected to affect the amplification of combustor
oscillations in the various modes. Amplification is also affected by any
time lag in the interaction of the burning process with the oscillations.

(3) Finite transverse waves: Combustion-chamber oscillations may
have extremely high amplitudes. The character of finite-strength trans-
verse waves therefore merits an Investigation to determine, for example,
whether or not compressive transverse waves steepen to form shocks, as
do plane waves.

MODES OF OSCILIATICN
Differential Equations and Assumptions

The action of a flame holder in a combustor (fig. 1) tends to pro-
duce a region extending downstream in which burning is especially vig-
orous. The gases surrounding the flame-holder wake would presumgbly be
burning, but at a slower rate. These surrounding gases (shown shaded
in fig. 1) are assumed to obey the equations of compressible nonviscous
flow with heat addition

R ~ - e et e ey e e e i e e T T e e e - i g i e s = =
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Dg
Momentum: P -D;t: = ~-Vp h
Continuity: Py + V .(pa) =0
De, T > (6)
Energy: P tPVL= pH
State: p= (v - 1)pc,T )

In the absence of disturbance, one-dimensionsl steady flow is
assumed, and equations (6) become

— — Y
pul, = - D,

(7)

pu = constant
0

P, T, + P, = 8

5= (r - pe,T

The disturbance field is assumed to involve the high-frequency
motion usual in cases of acoustic resonance. The consequent assumption

% = order(?a.' %) (8a)

is made concerning derivatives in the disturbance field. Combustors
usually produce large temperature changes at rather low Mach number.
Accordingly, the assumption of small Mach number is made

M<<1 (8b)

The various flow quantities may now be assumed to be perturbed
slightly from their steady values; thus, for example,

p(x,r,0,t) = p(x) + p'(x,r,0,t) (8c)
If equation (8c) and similar expressions for the other flow prop-

erties are substituted into equation (6), taking note of equatiomns (7),
(8a), and (8b), there follows, to first order,

iy Ik 5
_— e — o V 1 = B 1
P Px g e,T .
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If it is further assumed that, when the temperature undergoes a relative
change, the rate of heat release H has a relative change of the same
order, then the right side of the foregoing equation is of order M, and,
for consistency with equation (Bb), should be neglected. The equation
replacing the wave equation (la) is thus

= v%p: (92)

Pg. = - Vp' (9b)
o Pt B.
Loyp Epqu X (9¢)
2 o b

. I (9a)

P © T

Thus, to zero order in Mach number, the oscillations are not ampli-
fied by coupling between an oscillation and the combustion process. How-

ever, to this order in Mach number, the mode of oscillation is affected
by the mean temperature gradient T, produced by the burning.

Solutions

Equation (9a) may be satisfied by solutions in the following form
(obtained by separation of variables):

% e (x)ei(a)t+n9) c(,Jn(C %) + an@ %) (102)

vhere G(x) must satisfy the equation

m 2
e'(x) + -T_-@’i G (x) + 3-22(’2—)- - gi a(x) = 0 (10b)

If the distance required for unit relative change in temperature is long
compared with the burner diameter, then the term of equation (10b) con-
taining the factor Tx may be neglected, and equations (lO) mey be re-

placed by the classical solution (eq. (2)), the speed of sound
a = of (Y—l)cp'f being regarded as variable with x. If the term involv-
ing Tx is not neglected, then equation (lOb) must usually be integrated

numerically.
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The constant C 1is determined by transverse boundary conditions,
and ® is then determined by an axial boundary condition, which is

assumed for this case to be

ap
®=C—= (10¢)
vhere ap is the final (maximm) speed of sound attained in the com-
bustor. If equation (10c) applies, the x-dependence of the oscillation
is governed by the equation (which replaces eqg. (10b))

- 2
T 2 a

G"+=XG’+EE _—_—%-1 G=0 (104)
T R%| a(x)

Cleerly, if T approaches a constant value as x increases, equation
(10d) provides that G must become and remain constant (G being
assumed to remain finite). Therefore, the effect of equation (10c) is
to assume that any oscillation becomes entirely transverse for large
x. In the region upstream of the flame holder there is a sinusoidal
variation of pressure with x, which for a traveling wave results in a

spiral wave form.

Figure 2 illustrates the axial form of the mode corresponding to
equation (10c) obtained by numerical integration of equation (104) for
the iliustrated axial variation of sound speed and for the ratios
R/L = 0.1 and 1. The constant C was taken to correspond to the first
sloshing mode (n = 1, m= O), and the solutions were adjusted so that
G(») = 1 in each case. The larger value of R/L corresponds most
closely to a large combustor, while the other value would be more reason-
able for a combustor with a very small diameter.

AMPLIFICATION AT A THIN ANNULUS
Assumptions and Boundary Conditions

It is assumed that burning in the wake behind a flame holder,
here assumed to be annular, is substantially more vigorous than in the
surrounding gases (fig. 1). Thus, the assumptions leading to equations
(10) are inappropriate to oscillations occurring within the snnulus. A
different simplifying assumption is made concerning the annulus; namely,
that the region of vigorous burning is extremely thin - too thin to
support a transverse pressure difference. Thus, employing subscripts c
and w to denote the disturbance fields between centerbody and annulus,
and annulus and outer wall, respectively,

Pc':(rl:e:t) = P;T(rl: Q,t) (lla)
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Within the ennulus, the burning rate is assumed to undergo relative
change in proportion to relative change in temperature (and hence pres-
sure, for sufficiently small axial steady-state gradients (eq. (9)).
This fluctuating energy release in the annulus is communicated to the
surrounding gases as fluctuating mechanical work, such as would be per-
formed by an aneroid expanding and contracting. The mechanical work
would be in proportion to the radial velocity difference

thr(rl’ G,t) - Vé (rl’ 9,'[',)

Thus, in view of equation (9b) and the postulated relation between tem-
perature and heat release, for a vanishingly thin annulus,

1 H

Fc (I‘l,e,‘t) - FW (rl,Q,t) =K ‘&H (rl:e:t) (]_'L'b)

wvhere K 1is a quantity which depends on the combustion process within
the anmmulus, and must in general vary with x. If the annulus has an
axial extent much greater than the combustor diameter, then K may

be regarded as constant. (This condition is not likely to be satisfied
in a real combustor, but is considered to be qualitatively permissible.)

Equations (11a) and (11b) (K regarded as constant) are boundary
conditions to be imposed on the oscillation in the surrounding gases.
This oscillation is considered as composed of two parts, applicable for
r<ry end r >r; separately, each part having the form of equation

(10a). Thus, two sets of constants appear: ac, B, and «, B,. Further

boundary conditions specify vanishing normal velocity at the outer wall
and at the centerbody:

1

= (R,6,8) =0 (11c)
g—i—é (xp,6,t) =0 (114)

The four homogeneous boundary conditions (egs. (11)) relate the
four constants «, Bc, s and Bw’ and yield the following determinantal

equation for m:
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_[%%@mng)] -[%Nﬁ@mn(gl)] 253 2n(D)-o w

gu(z) 3 (z0)
W (z) ~ Wi (zp)

vhere z = r/ap, Z= QR/a, and zy = Rrp/ap. First-order terms in K
define 1 and yield the amplification, which is equal to the negative
of the imaginary part of w:

2
S J,(2)
. 22(1 - E%) Jo(zq) - Ny(z;) N’f‘ 2
- B m) = Z - - = =4, (13)
b8
o (8) (5
we(z)  12(z)

The grouping of constants on the left should be held constant for com-
parison of the effect of changes in flame-holder and centerbody config-
uration. In particular, since the quantity X (eq. (11b)) must depend
on the rate of heat release per unit surface area of the annulus, nr;K
is proportional to the total rate of heat release at the annulus per unit
length, and hence, for comparison purposes, should be held constant.

If there is no centerbody,

5 = Ag (14)
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The amplificetion A,, for the case of no centerbody, is plotted in

figure 3 for several modes as a function of r/R. The greatest amplifi-
cation occurs with the radial mode (n = O, m = 1) when the burning is
concentrated near the axis. Amplification is generally greatest when
energy is added near a pressure loop (ref. 2, p. 226), and only the radial
modes (n = 0) have such & loop near the axis. The higher modes (n = 1)
have pressure nodes at the axis and are not amplified at all when burn-
ing is concentrated there. If the annulus is placed near the wall, higher
modes (which have pressure loops at the wall) undergo the greater
amplification.

The effect of a centerbody is shown in figure 4. Only the first
sloshing mode (n = 1, m = 0) is considered. If the annulus is near the
outer wvall, the presence of a centerbody decreasqs the asmplification
somevhat, vhereas the opposite is true if the annulus is near the center

of the chamber.

Time Lag

Figures 3 and 4 predict the occurrence of the radial mode for burn-
ing near the axis or higher-order transverse modes for burning fer from
the axis. However, it is reasonable to inquire whether or not these re-
sults might be altered if there is introduced a time lag between state
changes and fluctuations of the combustion process. The simplest lag
hypothesis for the present problem is that a change in temperature pro-
duces a corresponding change in heat release at a somewhat later time.
(Crocco and Cheng (ref. 5) and Cheng (ref. 4) consider the effects of
time leg in their analyses of resonance in rocket engines.) The basic
cause of such a lag is not specified, but might derive from the combus-
tion kinetics of each burning element.

Thus, equation (11b) is replaced by

1 1

¢ op
'aair' (rl)e)t) - a_rw‘ (rl)eyt) =K 5% (I‘l,e,t-‘t) (15)

vhere 1 1is a (constant) time lag. The analysis subsequent to equation
(llbz m?y then be repeated, resulting in a modification of equations (13)
and (14

4R%
- 2
ﬂrlKaf

Im(w) = [Al or Az] cos 9T (16)
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If QT < %, increasing the frequency decreases the amplification and, in
fact, causes damping if 1t/2< @t < n. Therefore, the amplification of
the first sloshing mode (n =1, m= 0) would be more intense relative to
the other modes than is indicated in figures 3 and 4.

Actually, it would not be expected that a single time lag T char-
acterizes the entire burning process, but rather that each burning ele-
ment would have a different response lag, so that each of the quantities
A cos 7 in equation (16) is replaced by

Af F(t) cos QT dt
o)

vhere F(x1) is a distribution function for which a suitsble choice might
be
~t/t%
F(t) = ::E'ce (17)

o0
which has the properties F(0) = F(=) = O,f F{t)at = 1, and which
0

has a maximm at T = T%. Use of the preceding relations yields, in
place of equation (16),

2 . ) 2
-~ m(w) = [4; or )] &= 2 (18)

e )

Therefore, modes for which 1% > 1 would be damped. if this equation
holds. For amplified modes, the coefficient of the A's diminishes the
amplification of modes of higher frequency.

FINITE TRANSVERSE WAVES

In one-dimensional unsteady flow, strong compression waves progres-
sively steepen into shocks, which move with a speed greater than that of
sound. This dependence of propagation speed on amplitude implies a de-
pendence of wave form and frequency on amplitude in any one-dimensional
cyclic process involving compression waves. The subsequent analysis is
concerned with determining whether or not amplitude is similerly impor-
tant for strong transverse oscillations in a cylinder, in order to indi-
cate whether agreement between acoustic theory and experiment may be
anticipated.

3057
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Differential Equations

An isentropic irrotationsl disturbance field (not necessarily weak)
obeys the eqguations

<, _r p__35° )
Momentum: ¢t+2+‘r-lp=‘r-l
Continuity: py + v-(pa) =0 )
(19)
State isentropy: P < pY
Definition of potential: qa=vVe )

vhere a is the speed of sound in the absence of any oscillation. Egqua-
tions (19) may be cambined to yleld a differentisl equation for ¢:

Our - BT0= - l_—(q.?‘)Jc + % a-v(a?) + (r - 1) (‘Pt + %— qz)vzca (20)

Next, a finite-strength wave pattern is sought in the form of a
power series in an amplitude parameter e

® = &R (e(p(l) + e2ol2) | ) (21)

Substitution into equation (20) and collection of terms of first and sec-
ond order in ¢ yield, respectively,

cptt(l) - 3% < o (22)
0, (2) | F2® - _ o (W(l),wt(l) LTl <Pt(l)¢tt(l)) (23)
and so forth.
Solutions

One-dimensional motion. - A weak traveling wave may have the form

o) = k gin sz(t + %) (24)
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which satisfies equation (22). Then equation (23) may be written

() —2  (2) v +12R .2 x
Oy | m B g | =Rk sinzsz(t+:) (25)

No solution of equation (25) can be written congistent with the existence
of a strong wave moving at constent speed with a permanent weve form,
becausge the solution must contain a particular integral of the type

- -T-"'—:I'SLZ:R ¥ 9t cos 282(1: + ﬁ) (28)
5 2 =

Therefore, no permanent one-dimensional finite wave is possible (ref. 2,
p. 480).

Transverse motion in a cylindrical pipe. - From equation (2), the
first sloshing mode (n = 1, m = O) is chosen for study:

9(1) = 3,(2) sin (9t + 6) (27)

Equation (27) represents a wave spimning in a clockwise direction. The
addition of a wave spinning in the opposite direction would yield a
standing, or sloshing, motion. Equation (27) camnot be interpreted as
representing a succession of pulses traveling with the speed of sound,
as can equation (24). The "wave front" of equation (27) travels at an
apparent Mach number varying from zero at the cylinder axis to 1.84 at
the cylinder wall and therefore should be regarded essentially as an
interference pattern rather than as a wave front. The foregoing consid-
eration suggests that the progressive steepening with time, characteris-
tic of isolated pulses and illustrated by equation (26), need not neces-
sarily be expected in the case of tran?vs,rse motion in a cylinder. The
attempt is therefore made to obtain © 2) in the form

o{2) = £(2) sin 2(2t + 6) (28)

Substituting equations (27) and (28) into equation (23) yields an equa-
tion for £(z)

£ Iy 4( - -i'—z-)f =z [Jiz(z) -(Y =L ;lg) le(ZEl (29)
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The boundary condition at the cylinder wall is
£'(z) =0 (20)
and, at z = 0, £(z) must be an analytic function.

The solution to equation (29) may be written as

£(z) = g—{('r + 1) [DJZ(ZZ) B, g(z)] + le(z)} (31)

vhere, by substitution into equation (29), g(z) is a particular solution
of the equation

g+ g+ 4(? - f%)g = 3,%(z) (32)

and DJé(Zz) is the complementary solution of the same equation. The

constant D is chosen so that boundary condition (30) is satisfied.
Equation (32) may be solved by a series method, adopted for convenience
in computation, yielding the result

Jiz\t 7 (2P, 19 (2\® 167 (z\10 437 (a\12
& =3 2 T 24\2 180\2 8640\2 151200\2 -

1979 G\ 4387 (2\'° (53)
7257600\2 228614400\2 oot

Introduction of equations (31) and (33) into boundary condition (30)
gives

D = - 0.384433 (34)

Equations (28), (31), (33), end (34) complete the solution, indicating
that a "permanent" transverse acoustic wave of finite amplitude is pos-
sible, at least to second order. Thus, a strong wave form may have a
Fourier series, consisting of the linearized solution and its harmonics,
for transverse motion in a cylinder, but not for a purely one-dimensionsl
wave.

Numerical Results and Discussion

The results of the previous section may be expressed through the
equations of motion (egs. (19)) in terms of pressure fluctuation:
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.(ﬁ*__ =1+ 6P cos (2t + 6) + &¥2[Pyy + Ppy cos 2(Rt + eﬂ +oe
£7=0
(35)

where the definition

e*

E= - TZJl 7 (56)
is made, so that Py(Z) = 1, as a matter of choice. Furthermore,

J4(z)
Pl:J_;'_-m \

?(37)

Z

2 (1 ) i) 5,%(z)  33%(a)

P = — -
20~ 4y 2 Jiz(z) 3,2(2)

2y =k dafr 4 1) | Sl ¢ 2 (+2) 7% _ 30

22 T Iy le(z) le(z) 2) 5,2(z) - le(z_)l )

Z
With v = 1.4 assumed, numerical results for P;, Pog, and Poo

are shown in figure 5 as functions of r/R (equivalent to z/Z). The sym-
bol P; represents the radisl distribution of pressure amplitude in a
spinniflg acoustic wave of the first sloshing mode (n = 1, m = 0); Ppy
is a steady second-order correction to the radial pressure distribution,
and signifies that the oscillation tends to exhaust the center of the
cylinder and compress the fluid near the wall, in the manner of a cen-
trifuge; and PZZ is the radial distribution of pressure amplitude of
the first overtone. This overtone is strongest relative to the funda-
mental tone at the wall and is relatively weakest at the cylinder axis.

The modification of the wave form, when the oscillation is rather
weak but not of infinitesimal strength, is illustrated in figure 6.
Owing to terms of second order in &%, the pressure crests at the cyl-
inder wall are steeper and higher than those of the fundamental harmonic
wave, and the troughs are broader and shallower, in the familiar pattern
of second-harmonic distortion. A lesser second-order effect is the
slight increase in average pressure at the cylinder wall, owing to Pyj.

The steepness of the crests illustrated in figure 6 is suggestive
of the steepening of one-dimensional compression waves leading to shock
formation, but is not a progressive steepening with time as in the one-
dimensional case. Rather, the modified wave shown in figure 6 may be
imagined to proceed around the cylinder wall without change ad infinitum.

3057
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To the present order of approximation, the fundamental frequency does
not change either with time or with amplitude, although overtones appear
in proportion to amplitude. It masy therefore be concluded that violent
combustion-chamber resonance is not necessarily incompstible with
acoustic-theory predictions. -

The permanent isentropic character of the solution obtained in the
foregoing analysis suggests that strong transverse oscillations may not
be subject to the dissipative normal stresses which tend to limit the
amplitude of a one-dimensional strong-wave cycle involving shock waves.

CONCLUDING REMARKS

On the assumption that conmbustion-chamber regonance results from the
amplification of an initially weak wave of transVerse type coupled with
a pressure-dependent rate of energy release in the combustor, three prob-
lems were discussed:

1. Modes of oscillation: It was shown that if the mean flow Mach
number is assumed very small, then the possible modes of weak disturbance
are governed by a wave equation in classical form except for a term de-
pending on the streamwise variation of temperature in the combustor.

Two such modes were determined by numerical integration, subject to the
assumption that in the afterportion of the combustor the oscillation is
purely transverse. These modes conform to the classical spiral modes
(if the wave is a traveling one) upstream of the burning zone, with a
pitch depending on the ratio of chamber diameter to length of burning
zone, as well as on the combustor temperature.

2. Amplification at a thin annulus: In the gpproximation of very
small Mach number, the burning process does not amplify the modes des-
cribed. The especially vigorous burning in a flame-holder wake would
provide amplification, however. A flame-holder weke is idealized as a
thin annulus performing work upon the surrounding gases in proportion
to the instantaneous pressure level.

Analysis of the resulting smplification indicates that concentra-
tion of vigorous burning near the center of the combustor amplifies the
radial mode most strongly. Burning concentrated near the combustor wall
amplifies the higher sloshing modes. The presence of a centerbody
slightly increases (decreases) the lification of the sloshing mode if
energy is added near the immer (outer) well.

Supposition of a time lag between temperature disturbance and heat-
release rate in the annulus favors emplification of lower-frequency
modes; in particular, the first sloshing mode, which has the lowest fre-
quency of all possible modes.
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3. Finite transverse waves: The nature of strong transverse acous-
tic oscillations was considered. It was shown that, to second order,
amplitude affects wave form in a spinning oscillation, causing the pres-
sure crests to be higher and sharper and the troughs shallower and
broader. The average pressure is diminished nesr the axis and increased
near the wall, suggesting a sort of centrifugal pumping. The wave form
does not undergo progressive change leading to formation of a shock, as
in one-dimensional flow; rather, the fundamental frequency does not de-
pend on amplitude, to the present order of approximation.

Furthermore, the permanently isentropic nature of the transverse-
wave solution suggests that transverse modes in a cylindrical enclosure
are not inhibited by viscous effects to the same degree as are one-
dimensionsal waves, and for this reason are perhaps better able to attein

extreme amplitudes.

Lewis Flight Propulsion Laboraztory
National Advisory Committee for Aeronautics
Cleveland, Ohio, May 19, 1954

3057



Ls0g

CL-3

NACA TN 3152

17

APPENDIX - NOTATION

The following notetion is used in this report:

Aqsho

a

L"WNQ—IE'IIIGQ

|

n

N

Py,P20,Pz2

P

amplification rates (egs. (13) and (14))

speed of sound, m

final speed of sound attained in combustor

constant (eqs. (2) and (10))

specific heat at constant volume

spécific heat at constant pressure

constant (eq. (34))

function associated with second-order solution (eg. (28))
function used in description of mode (egs. (10))

function associated with second-order solution (eq. (31))
steady rate of heat release per unit volume

imaginary part

Bessel function of first kind of order n, (ref. 6)
constent of proportionality (eq. (11b))

amplitude (eq. (24))

axial extent of region of substantial temperature change
(fig. 2)

meen flow Mach number

each of the sequence of numbers for which J; =0
mode

Bessel function of second kimd of order n (ref. 6)

pressure coefficients (egs. (37))

static pressure
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ha

20,23,

a

magnitude of disturbance velocity vector
disturbance velocity vector

inside redius of combustion chamber (fig. 1)
radial coordinate (fig. 1)

combustor dimensions (fig. 1)

static tempersture

time

axial perturbation velocity

axial coordinate (sketch (a))

dimensionless quantity, S—;g—

dimensionless coordinate, %fll
193 7] Ql‘l

ap ’ ap

coefficient (eq. (10a))
coefficient (eq. (10a))

ratio of specific heats, c Cy

NACA TN 3152

amplitude parameters (egs. (21) and (36), respectively)

coefficient involved in solution of equation (12)

angular coordinate (fig. 1)

density

time lag (eq. (15))

most probable time lag (eq. (17))
disturbance velocity potential (_g = V(p)
frequency in absence of burning

frequency

3057



FAS{0}%

CL-3 back

NACA TN 3152 19

Superscripts:
(1) first-order solution
(2) second-order solution

' disturbance quantities and, when convenient, ordinary
differentiation -

Barred symbols denote flow quantities in absence of disturbance.

Subscripts:

c region rp<r< Ty
n mode

W region r,<r<R

1
Subscript notation for partial differentiation when convenient.
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Flgure 1. - Assumed conflguration of combustor



3057

o 2
5 & 2
29 /
g8
l .2
2%
py——— T, -
g
b
R/L a b
SN kd
. L e — —
- — - 1.0 —
e
N\ pd R '

N

/
/

/
/
\

\

\
e
éj

Filgure 2, - Langlitudinal pressure variation for a combined mode
for s partioular axial distribution of socund speed. M << 1,

(defined by eqs. 10(a) and (d) for

n=1,mm Q)

2518 NL VOVH

T2



Amplification rate, Az
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Figure 3. - Amplification rate for various modes. Burning in narrow
annulus.,
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Figure 4. - Amplification rate for first sloshing mode (n = 1,
m = 0) with centerbody and burning in annulus.
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Pressure coefficients, Pl, on, and Pzz

1.0

NACA TN 3152
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Figure 5. - Radlal distribution of pressure amplitude.
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Pressure, p

- - 5*1’1 cog (0t + 8)

z*Pl cos (wt + 6) +
G*Z[PZO + Py, cO8 2{wt + Bﬂ
(p)g*ﬂo N _ / _ - wt46
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Flgure €. - Modifloatlion of fundamental pressure fluctuatlion at oylinder
wall, owlng to seoond-order terms.
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